本篇的源码分析基于golang 1.19.2
map的底层数据结构
golang map底层由两个核心的结构体实现:hmap和bmap,bmap本篇用桶代替。
golang的代码中一旦初始化一个map,比如:make(map[k]v, hint),底层就会创建一个hmap的结构体实例。该结构体实例包含了该map的所有信息。上图列了几个主要的成员。
count:golang中的length(map[k]v)就返回的是该结构体的count
B:桶的数量的log2,如果B为1就创建两个桶,若B为3就创建8个桶,一个桶可以最多存放8个key/value对,golang代码中若写了make(map[k]v, 10),创建的hmap对应的B就等于2
buckets:当前map的桶数组
hash0:哈希因子,有点类似加密算法的盐
下面的makemap函数就是初始化了一个map的golang语句make(map[k]v, hint),底层的map初始化。下面代码干的事情主要是:初始化一个hmap结构体,计算B值,创建桶数组。
func makemap(t *maptype, hint int, h *hmap) *hmap {
mem, overflow := math.MulUintptr(uintptr(hint), t.bucket.size)
if overflow || mem > maxAlloc {
hint = 0
}
// initialize Hmap
if h == nil {
h = new(hmap)
}
h.hash0 = fastrand()
// Find the size parameter B which will hold the requested # of elements.
// For hint < 0 overLoadFactor returns false since hint < bucketCnt.
B := uint8(0)
for overLoadFactor(hint, B) {
B++
}
h.B = B
// allocate initial hash table
// if B == 0, the buckets field is allocated lazily later (in mapassign)
// If hint is large zeroing this memory could take a while.
if h.B != 0 {
var nextOverflow *bmap
h.buckets, nextOverflow = makeBucketArray(t, h.B, nil)
if nextOverflow != nil {
h.extra = new(mapextra)
h.extra.nextOverflow = nextOverflow
}
}
return h
}
设计
golang的map之所以效率高,得益于下面的几处巧妙设计:
(1)key hash值的后B位作为桶index查找桶
┌─────────────┬─────────────────────────────────────────────────────┬─────────────┐
│ 10010111 │ 000011110110110010001111001010100010010110010101010 │ 01010 │
└─────────────┴─────────────────────────────────────────────────────┴─────────────┘
▲ ▲
│ │
│ │ B = 5
│ │ bucketMask = 11111
│ │
│ ┌─────────────┬───┬─────────────┐
│ │ low bits │ & │ bucketMask │
│ ├─────────────┴───┴─────────────┤
│ │ 01010 & 11111 │
│ └───────────────────────────────┘
│ │
│ │
│ │
│ ▼
│ ┌───────────────────┐
│ │ 01010 = 12 │
│ └───────────────────┘
│ │
│ │
│ │
│ │
│ │
┌─────────────┐ │
│ tophash │ │
└─────────────┘ ┌─────────┐ │
│ │ buckets │ ▼
│ ├───┬───┬─┴─┬───┬───┬───┬───┬───┬───┬───┬───┬───┐ ┌───┬───┬───┐
│ │ 0 │ 1 │ 2 │ 3 │ 4 │ 5 │ 6 │ 7 │ 8 │ 9 │10 │11 │ ...│29 │30 │31 │
│ └───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┘ └───┴───┴───┘
▼ │
┌──────────────────┐ │
│ 10010111 = 151 │─────────────┐ │
└──────────────────┘ │ │
│ │
│ │
│ ┌───────────────────────┘
│ │
│ │
│ │
│ │
│ │
│ │
│ ▼
│ ┌─────────────┐
│ │ bucket │
┌─────────────────────────────┼──────────────────────┴─────────────┤
│ │ │
│ ┌─────────┐ │ │
│ │ tophash │ ▼ │
│ ├───────┬─┴─────┬───────┬───────┬───────┬───────┬───────┬───────┐│
│ │ 124 │ 33 │ 41 │ 151 │ 1 │ 0 │ 0 │ 0 ││
│ ├───────┴─┬─────┴───────┴───────┴───────┴───────┴───────┴───────┘│
│ │ 1 │ │
│ ├───────┬─┴─────┬───────┬───────┬───────┬───────┬───────┬───────┐│
│ │ 124 │ 412 │ 423 │ 5 │ 14 │ 0 │ 0 │ 0 ││
│ ├───────┴─┬─────┴───────┴───────┴───────┴───────┴───────┴───────┘│
│ │ values │ │
│ ├───────┬─┴─────┬───────┬───────┬───────┬───────┬───────┬───────┐│
│ │ v0 │ v1 │ v2 │ v3 │ v4 │ 0 │ 0 │ 0 ││
│ ├───────┴───────┴──┬────┴───────┴───────┴───────┴───────┴───────┘│
│ │ overflow pointer │ │
│ └──────────────────┘ │
│ │
└──────────────────────────────────────────────────────────────────┘
若上面的makemap函数算出的B值=5,则bucketMask = 11111,key的hash值和bucketMask相与。就是取key的hash值的低B位,作为buckets数组的index查找桶。
(2)key hash值的前8位作为桶内结构体的三个数组(tophash,key,value)的index
通过上一步找到了桶,因为一个桶最多由8个key/value对,所以还要进一步查找,这时候用到了tophash。参考上一步的图,tophash是取key的hash值的高8位。之所以要多出tophash存储空间,是为了空间换时间,加速寻址速度。
(3)桶结构体的tophash复用,既作为tophash使用,也作为标志位使用
从上面的图看出,tophash数组不仅保存了tophash,还在当桶里8个key/value对某一对为空时保存了标志位。
emptyRest = 0 // this cell is empty, and there are no more non-empty cells at higher indexes or overflows.
emptyOne = 1 // this cell is empty
evacuatedX = 2 // key/elem is valid. Entry has been evacuated to first half of larger table.
evacuatedY = 3 // same as above, but evacuated to second half of larger table.
evacuatedEmpty = 4 // cell is empty, bucket is evacuated.
minTopHash = 5 // minimum tophash for a normal filled cell.
底层对map的读写删除都运用了上面的(1)(2)(3),根据key是否存在写包括了更新和新增。
func mapaccess2(t *maptype, h *hmap, key unsafe.Pointer) (unsafe.Pointer, bool) {
...
// hmap为nil或map的length为0,返回未找到key
if h == nil || h.count == 0 {
if t.hashMightPanic() {
t.hasher(key, 0) // see issue 23734
}
return unsafe.Pointer(&zeroVal[0]), false
}
// 读写冲突
if h.flags&hashWriting != 0 {
fatal("concurrent map read and map write")
}
// 不同的key类型运用不同的hash算法,并加入hash因子,算出key对应的hash值
hash := t.hasher(key, uintptr(h.hash0))
// 根据B值算出mask,就是B等于几就是几个1
m := bucketMask(h.B)
// 根据key的hash的后B位作为buckets数组的index,寻址到桶b
b := (*bmap)(add(h.buckets, (hash&m)*uintptr(t.bucketsize)))
// 若存在biggerSizeGrow扩容的旧桶数组,则将m去掉一个1,并在旧桶中寻址
if c := h.oldbuckets; c != nil {
if !h.sameSizeGrow() {
// There used to be half as many buckets; mask down one more power of two.
m >>= 1
}
oldb := (*bmap)(add(c, (hash&m)*uintptr(t.bucketsize)))
if !evacuated(oldb) {
b = oldb
}
}
top := tophash(hash)
bucketloop:
// for ; b != nil; b = b.overflow(t) 是链式查找(为了解决hash碰撞,桶结构体加入了链表)
for ; b != nil; b = b.overflow(t) {
for i := uintptr(0); i < bucketCnt; i++ {
// b.tophash[i] != top 对比key的tophash是否存在
if b.tophash[i] != top {
// 优化寻址,tophash数组复用了标志位,一旦检测到emptyRest则跳出外层大循环,返回key在map中未找到
if b.tophash[i] == emptyRest {
break bucketloop
}
// key的tophash和tophash数组中的某个元素不相等,则进入小循环的下一个index的对比,或者进入大循环的下一个桶链表的查找
continue
}
// 走到这一步,就是tophash已匹配,取出桶结构体的key数组对应的index对应的值,并对比两个key是否相等(对比tophash和key对比为了防止哈希碰撞和加快寻址),若相等则返回桶结构体的value数组对应的index对应的值
k := add(unsafe.Pointer(b), dataOffset+i*uintptr(t.keysize))
// indirectkey 和 indirectvalue 在64位的系统中 map 里实际存储的是8字节的指针,会造成 GC 扫描时,扫描更多的对象。至于是否是 indirect,依然是由编译器来决定的,依据是:
// key > 128 字节时,indirectkey = true
// value > 128 字节时,indirectvalue = true
if t.indirectkey() {
k = *((*unsafe.Pointer)(k))
}
if t.key.equal(key, k) {
e := add(unsafe.Pointer(b), dataOffset+bucketCnt*uintptr(t.keysize)+i*uintptr(t.elemsize))
if t.indirectelem() {
e = *((*unsafe.Pointer)(e))
}
return e, true
}
}
}
return unsafe.Pointer(&zeroVal[0]), false
}
map的key的删除,类似上面的读,不详细分析了。下面的代码主要做了2件事:寻址到key并删除key对应的地址空间和value对应的地址空间;遍历删除key后面的桶元素和桶链表,对其中的tophash保存的标志位更新,是空emptyOne还是之后的所有的都是空emptyRest。可以加快map的读写操作。
func mapdelete(t *maptype, h *hmap, key unsafe.Pointer) {
...
if h == nil || h.count == 0 {
if t.hashMightPanic() {
t.hasher(key, 0) // see issue 23734
}
return
}
if h.flags&hashWriting != 0 {
fatal("concurrent map writes")
}
hash := t.hasher(key, uintptr(h.hash0))
// Set hashWriting after calling t.hasher, since t.hasher may panic,
// in which case we have not actually done a write (delete).
h.flags ^= hashWriting
bucket := hash & bucketMask(h.B)
if h.growing() {
growWork(t, h, bucket)
}
b := (*bmap)(add(h.buckets, bucket*uintptr(t.bucketsize)))
bOrig := b
top := tophash(hash)
search:
for ; b != nil; b = b.overflow(t) {
for i := uintptr(0); i < bucketCnt; i++ {
if b.tophash[i] != top {
if b.tophash[i] == emptyRest {
break search
}
continue
}
k := add(unsafe.Pointer(b), dataOffset+i*uintptr(t.keysize))
k2 := k
if t.indirectkey() {
k2 = *((*unsafe.Pointer)(k2))
}
if !t.key.equal(key, k2) {
continue
}
// Only clear key if there are pointers in it.
if t.indirectkey() {
*(*unsafe.Pointer)(k) = nil
} else if t.key.ptrdata != 0 {
memclrHasPointers(k, t.key.size)
}
e := add(unsafe.Pointer(b), dataOffset+bucketCnt*uintptr(t.keysize)+i*uintptr(t.elemsize))
if t.indirectelem() {
*(*unsafe.Pointer)(e) = nil
} else if t.elem.ptrdata != 0 {
memclrHasPointers(e, t.elem.size)
} else {
memclrNoHeapPointers(e, t.elem.size)
}
b.tophash[i] = emptyOne
// If the bucket now ends in a bunch of emptyOne states,
// change those to emptyRest states.
// It would be nice to make this a separate function, but
// for loops are not currently inlineable.
if i == bucketCnt-1 {
if b.overflow(t) != nil && b.overflow(t).tophash[0] != emptyRest {
goto notLast
}
} else {
if b.tophash[i+1] != emptyRest {
goto notLast
}
}
for {
b.tophash[i] = emptyRest
if i == 0 {
if b == bOrig {
break // beginning of initial bucket, we're done.
}
// Find previous bucket, continue at its last entry.
c := b
for b = bOrig; b.overflow(t) != c; b = b.overflow(t) {
}
i = bucketCnt - 1
} else {
i--
}
if b.tophash[i] != emptyOne {
break
}
}
notLast:
h.count--
// Reset the hash seed to make it more difficult for attackers to
// repeatedly trigger hash collisions. See issue 25237.
if h.count == 0 {
h.hash0 = fastrand()
}
break search
}
}
if h.flags&hashWriting == 0 {
fatal("concurrent map writes")
}
h.flags &^= hashWriting
}
map的写类似上面的读,不详细分析了:
func mapassign(t *maptype, h *hmap, key unsafe.Pointer) unsafe.Pointer {
// 因为有这句,所以golang编程中声明一个map后,不初始化,赋值会报错。
// 比如:
// var countryCapitalMap map[string]string
// //countryCapitalMap = make(map[string]string)
// countryCapitalMap [ "France" ] = "巴黎"
// 若不加中间这句make,会报错
if h == nil {
panic(plainError("assignment to entry in nil map"))
}
...
// 读写冲突
if h.flags&hashWriting != 0 {
fatal("concurrent map writes")
}
hash := t.hasher(key, uintptr(h.hash0))
// Set hashWriting after calling t.hasher, since t.hasher may panic,
// in which case we have not actually done a write.
h.flags ^= hashWriting
if h.buckets == nil {
h.buckets = newobject(t.bucket) // newarray(t.bucket, 1)
}
again:
bucket := hash & bucketMask(h.B)
if h.growing() {
growWork(t, h, bucket)
}
b := (*bmap)(add(h.buckets, bucket*uintptr(t.bucketsize)))
top := tophash(hash)
var inserti *uint8
var insertk unsafe.Pointer
var elem unsafe.Pointer
bucketloop:
for {
for i := uintptr(0); i < bucketCnt; i++ {
if b.tophash[i] != top {
if isEmpty(b.tophash[i]) && inserti == nil {
inserti = &b.tophash[i]
insertk = add(unsafe.Pointer(b), dataOffset+i*uintptr(t.keysize))
elem = add(unsafe.Pointer(b), dataOffset+bucketCnt*uintptr(t.keysize)+i*uintptr(t.elemsize))
}
if b.tophash[i] == emptyRest {
break bucketloop
}
continue
}
k := add(unsafe.Pointer(b), dataOffset+i*uintptr(t.keysize))
if t.indirectkey() {
k = *((*unsafe.Pointer)(k))
}
if !t.key.equal(key, k) {
continue
}
// already have a mapping for key. Update it.
if t.needkeyupdate() {
typedmemmove(t.key, k, key)
}
elem = add(unsafe.Pointer(b), dataOffset+bucketCnt*uintptr(t.keysize)+i*uintptr(t.elemsize))
goto done
}
ovf := b.overflow(t)
if ovf == nil {
break
}
b = ovf
}
// Did not find mapping for key. Allocate new cell & add entry.
// If we hit the max load factor or we have too many overflow buckets,
// and we're not already in the middle of growing, start growing.
if !h.growing() && (overLoadFactor(h.count+1, h.B) || tooManyOverflowBuckets(h.noverflow, h.B)) {
hashGrow(t, h)
goto again // Growing the table invalidates everything, so try again
}
if inserti == nil {
// The current bucket and all the overflow buckets connected to it are full, allocate a new one.
newb := h.newoverflow(t, b)
inserti = &newb.tophash[0]
insertk = add(unsafe.Pointer(newb), dataOffset)
elem = add(insertk, bucketCnt*uintptr(t.keysize))
}
// store new key/elem at insert position
if t.indirectkey() {
kmem := newobject(t.key)
*(*unsafe.Pointer)(insertk) = kmem
insertk = kmem
}
if t.indirectelem() {
vmem := newobject(t.elem)
*(*unsafe.Pointer)(elem) = vmem
}
typedmemmove(t.key, insertk, key)
*inserti = top
h.count++
done:
if h.flags&hashWriting == 0 {
fatal("concurrent map writes")
}
h.flags &^= hashWriting
if t.indirectelem() {
elem = *((*unsafe.Pointer)(elem))
}
return elem
}
有个特别的地方就是上面mapassign函数只返回了value插入的地址,并没有插入value的值。实际上赋值的最后一步是由编译器额外生成的汇编指令来完成的。汇编和golang编写的runtime包相结合,还是为了提高效率。为何不纯汇编写,效率更高,因为纯汇编有些复杂的流程人脑已经很难完成编写,所以有了编译器和 runtime 配合。
var a = make(map[int]int, 7)
for i := 0; i < 1000; i++ {
a[i] = 99999
}
看看生成的汇编部分:
0x003f 00063 (m.go:9) MOVQ DX, (SP) // 第一个参数
0x0043 00067 (m.go:9) MOVQ AX, 8(SP) // 第二个参数
0x0048 00072 (m.go:9) MOVQ CX, 16(SP) // 第三个参数
0x004d 00077 (m.go:9) PCDATA $0, $1 // GC 相关
0x004d 00077 (m.go:9) CALL runtime.mapassign_fast64(SB) // 调用函数
0x0052 00082 (m.go:9) MOVQ 24(SP), AX // 返回值,即 value 应该存放的内存地址
0x0057 00087 (m.go:9) MOVQ $99999, (AX) // 把 99999 放入该地址中
(4)扩容和迁移
扩容分为sameSizeGrow和biggerSizeGrow:
sameSizeGrow本质不是扩容,桶数组的length不变,而是重新整理,减少链表,提高寻址效率
┌──────────┬──────────┬──────────┬──────────┬──────────┬──────────┬──────────┬──────────┐
│ 0 │ 1 │ 2 │ 3 │ 4 │ 5 │ 6 │ 7 │
└──────────┼──────────┴─────┬────┴──────────┴──────────┴──────────┴──────────┴──────────┘
┌────────────────┐ │ tophash: 10 │
│ empty │ │ lowbits: 1001 │
│ │◀─────┐ ├────────────────┤
├────────────────┤ │ │ empty │
│ empty │ │ │ │
│ │ │ ├────────────────┤
├────────────────┤ │ │ empty │
│ empty │ │ │ │
│ │ │ │ ├────────────────┤
│ ├────────────────┤ │ │ tophash: 23 │
│ │ empty │ │ │ lowbits: 0001 │
│ │ │ │ ├────────────────┤
│ ├────────────────┤ │ │ empty │
┌──────────┐ │ │ empty │ │ │ │
│ before │ │ │ │ │ ├────────────────┤
└──────────┘ │ ├────────────────┤ │ │ tophash: 100 │
│ │ empty │ │ │ lowbits: 0001 │
│ │ │ │ ├────────────────┤
│ ├────────────────┤ │ │ empty │
│ │ tophash: 15 │ │ │ │
│ │ lowbits: 0001 │ │ ├────────────────┤
│ ├────────────────┤ │ │ empty │
│ │ empty │ │ │ │
│ │ │ │ ├──────────┬─────┘
│ └────────────────┘ └───────│ overflow │
│ └──────────┘
│
│
│
│
│ ┌────────────────┐
│ │ tophash: 10 │
│ │ lowbits: 1001 │
│ ├────────────────┤
│ │ tophash: 23 │
│ │ lowbits: 0001 │
│ ├────────────────┤
│ │ tophash: 100 │
│ │ lowbits: 0001 │
│ ├────────────────┤
│ │ tophash: 15 │
│ │ lowbits: 0001 │
│ ├────────────────┤
┌──────────┐ │ │ empty │
│ after │ │ │ │
└──────────┘ │ ├────────────────┤
│ │ empty │
│ │ │
│ ├────────────────┤
│ │ empty │
│ │ │
│ ├────────────────┤
│ │ empty │
│ │ │
│ ┌──────────┼──────────┬─────┴────┬──────────┬──────────┬──────────┬──────────┬──────────┐
│ │ 0 │ 1 │ 2 │ 3 │ 4 │ 5 │ 6 │ 7 │
│ ├──────────┴──────────┴──────────┴──────────┴──────────┴──────────┴──────────┴──────────┤
│ │ │
│ │ │
│ │ │
│ │ │
│ │ │
│ │ │
│ │ │
│ │◀───────────────────────────── X part ──────────────────────────────▶│
│ │ │
▼ │ │
│ │
│ │
│ │
sameSizeGrow需要了解标准桶和溢出桶的概念。当 bucket 总数 < 2 ^ 15 时,如果 overflow 的 bucket 总数 >= bucket 的总数,那么我们认为 overflow 的桶太多了。当 bucket 总数 >= 2 ^ 15 时,那我们直接和 2 ^ 15 比较,overflow 的 bucket >= 2 ^ 15 时,即认为溢出桶太多了。为啥会导致这种情况呢?是因为我们对 map 一边插入,一边删除,会导致其中很多桶出现空洞,这样使得 bucket 使用率不高,值存储得比较稀疏。在查找时效率会下降。
解决方法是通过移动 bucket 内容,使其倾向于紧密排列从而提高 bucket 利用率。
biggerSizeGrow是桶数组不够用了而进行的扩容,桶数组的length是原来的2倍
┌──────────┐ ┌──────────┬───────────
│ 0 │ │ 0 │ ▲
├──────────┼───────────────┬────────────────┐ ├──────────┤ │
│ 1 │ tophash: 10 │ tophash:23 │ ┌─────▶│ 1 │ │
├──────────┤ lowbits: 1001 │ low bits: 0001 │──────┘ ├──────────┤ │
│ 2 ├───────────────┴────────────────┘ │ 2 │ │
├──────────┤ │ ├──────────┤
│ 3 │ │ │ 3 │
├──────────┤ │ ├──────────┤ X part
│ 4 │ │ │ 4 │
├──────────┤ │ ├──────────┤
│ 5 │ │ │ 5 │ │
├──────────┤ │ ├──────────┤ │
│ 6 │ │ │ 6 │ │
├──────────┤ │ ├──────────┤ │
│ 7 │ │ │ 7 │ ▼
└──────────┘ │ ├──────────┼───────────
│ │ 8 │ ▲
│ ├──────────┤ │
└─────────────────────────────────────▶│ 9 │ │
├──────────┤ │
│ 10 │ │
├──────────┤
│ 11 │
├──────────┤ Y part
│ 12 │
├──────────┤
│ 13 │ │
├──────────┤ │
│ 14 │ │
├──────────┤ │
│ 15 │ ▼
└──────────┴───────────
是不是已经到了 load factor 的临界点,即元素个数 >= 桶个数 * 6.5,这时候说明大部分的桶可能都快满了,如果插入新元素,有大概率需要挂在 overflow 的桶上。
解决方法是将 B + 1,进而 hmap 的 bucket 数组扩容一倍。下面的biggerSizeGrow主要是重构扩容后的hmap结构体。
func hashGrow(t *maptype, h *hmap) {
// If we've hit the load factor, get bigger.
// Otherwise, there are too many overflow buckets,
// so keep the same number of buckets and "grow" laterally.
bigger := uint8(1)
if !overLoadFactor(h.count+1, h.B) {
bigger = 0
h.flags |= sameSizeGrow
}
oldbuckets := h.buckets
newbuckets, nextOverflow := makeBucketArray(t, h.B+bigger, nil)
flags := h.flags &^ (iterator | oldIterator)
if h.flags&iterator != 0 {
flags |= oldIterator
}
// commit the grow (atomic wrt gc)
h.B += bigger
h.flags = flags
h.oldbuckets = oldbuckets
h.buckets = newbuckets
h.nevacuate = 0
h.noverflow = 0
if h.extra != nil && h.extra.overflow != nil {
// Promote current overflow buckets to the old generation.
if h.extra.oldoverflow != nil {
throw("oldoverflow is not nil")
}
h.extra.oldoverflow = h.extra.overflow
h.extra.overflow = nil
}
if nextOverflow != nil {
if h.extra == nil {
h.extra = new(mapextra)
}
h.extra.nextOverflow = nextOverflow
}
// the actual copying of the hash table data is done incrementally
// by growWork() and evacuate().
}
迁移evacuate
func growWork(t *maptype, h *hmap, bucket uintptr) {
// make sure we evacuate the oldbucket corresponding
// to the bucket we're about to use
// 移动的 oldbucket 对应的是马上就要用到的那一个
evacuate(t, h, bucket&h.oldbucketmask())
// evacuate one more oldbucket to make progress on growing
// 如果还在 growing 状态,再多移动一个 oldbucket
if h.growing() {
evacuate(t, h, h.nevacuate)
}
}
evacuate函数主要是 if hash&newbit != 0 { useY = 1 },决定是迁移到新的桶数组的上半区还是下半区,并进行内存拷贝和旧空间的清理工作。
func evacuate(t *maptype, h *hmap, oldbucket uintptr) {
b := (*bmap)(add(h.oldbuckets, oldbucket*uintptr(t.bucketsize)))
newbit := h.noldbuckets()
if !evacuated(b) {
// TODO: reuse overflow buckets instead of using new ones, if there
// is no iterator using the old buckets. (If !oldIterator.)
// xy contains the x and y (low and high) evacuation destinations.
var xy [2]evacDst
x := &xy[0]
x.b = (*bmap)(add(h.buckets, oldbucket*uintptr(t.bucketsize)))
x.k = add(unsafe.Pointer(x.b), dataOffset)
x.e = add(x.k, bucketCnt*uintptr(t.keysize))
if !h.sameSizeGrow() {
// Only calculate y pointers if we're growing bigger.
// Otherwise GC can see bad pointers.
y := &xy[1]
y.b = (*bmap)(add(h.buckets, (oldbucket+newbit)*uintptr(t.bucketsize)))
y.k = add(unsafe.Pointer(y.b), dataOffset)
y.e = add(y.k, bucketCnt*uintptr(t.keysize))
}
for ; b != nil; b = b.overflow(t) {
k := add(unsafe.Pointer(b), dataOffset)
e := add(k, bucketCnt*uintptr(t.keysize))
for i := 0; i < bucketCnt; i, k, e = i+1, add(k, uintptr(t.keysize)), add(e, uintptr(t.elemsize)) {
top := b.tophash[i]
if isEmpty(top) {
b.tophash[i] = evacuatedEmpty
continue
}
if top < minTopHash {
throw("bad map state")
}
k2 := k
if t.indirectkey() {
k2 = *((*unsafe.Pointer)(k2))
}
var useY uint8
if !h.sameSizeGrow() {
// Compute hash to make our evacuation decision (whether we need
// to send this key/elem to bucket x or bucket y).
hash := t.hasher(k2, uintptr(h.hash0))
if h.flags&iterator != 0 && !t.reflexivekey() && !t.key.equal(k2, k2) {
// If key != key (NaNs), then the hash could be (and probably
// will be) entirely different from the old hash. Moreover,
// it isn't reproducible. Reproducibility is required in the
// presence of iterators, as our evacuation decision must
// match whatever decision the iterator made.
// Fortunately, we have the freedom to send these keys either
// way. Also, tophash is meaningless for these kinds of keys.
// We let the low bit of tophash drive the evacuation decision.
// We recompute a new random tophash for the next level so
// these keys will get evenly distributed across all buckets
// after multiple grows.
useY = top & 1
top = tophash(hash)
} else {
if hash&newbit != 0 {
useY = 1
}
}
}
if evacuatedX+1 != evacuatedY || evacuatedX^1 != evacuatedY {
throw("bad evacuatedN")
}
b.tophash[i] = evacuatedX + useY // evacuatedX + 1 == evacuatedY
dst := &xy[useY] // evacuation destination
if dst.i == bucketCnt {
dst.b = h.newoverflow(t, dst.b)
dst.i = 0
dst.k = add(unsafe.Pointer(dst.b), dataOffset)
dst.e = add(dst.k, bucketCnt*uintptr(t.keysize))
}
dst.b.tophash[dst.i&(bucketCnt-1)] = top // mask dst.i as an optimization, to avoid a bounds check
if t.indirectkey() {
*(*unsafe.Pointer)(dst.k) = k2 // copy pointer
} else {
typedmemmove(t.key, dst.k, k) // copy elem
}
if t.indirectelem() {
*(*unsafe.Pointer)(dst.e) = *(*unsafe.Pointer)(e)
} else {
typedmemmove(t.elem, dst.e, e)
}
dst.i++
// These updates might push these pointers past the end of the
// key or elem arrays. That's ok, as we have the overflow pointer
// at the end of the bucket to protect against pointing past the
// end of the bucket.
dst.k = add(dst.k, uintptr(t.keysize))
dst.e = add(dst.e, uintptr(t.elemsize))
}
}
// Unlink the overflow buckets & clear key/elem to help GC.
if h.flags&oldIterator == 0 && t.bucket.ptrdata != 0 {
b := add(h.oldbuckets, oldbucket*uintptr(t.bucketsize))
// Preserve b.tophash because the evacuation
// state is maintained there.
ptr := add(b, dataOffset)
n := uintptr(t.bucketsize) - dataOffset
memclrHasPointers(ptr, n)
}
}
if oldbucket == h.nevacuate {
advanceEvacuationMark(h, t, newbit)
}
}
转载请注明来源,欢迎指出任何有错误或不够清晰的表达。可以邮件至 backendcloud@gmail.com